Skip to content

二阶电路

Second-Order Circuits

A second-order circuit is characterized by a second-order differential equation. It consists of resistors and the equivalent of two energy storage elements.

That the capacitor voltage and inductor current cannot change instantaneously.

v(0+)=v(0)i(0+)=i(0)

where t = 0- denotes the time just before a switching event and t = 0+ denotes the time just after the switching event, assuming that the switching event takes place at t = 0.

无源串联 RLC 电路

The Source-Free Series RLC Circuit

Source-free series RLC circuit

如图:

v(0)=1C0i(t)dt=V0i(0)=I0

应用 KVL:

Ri+Ldidt+1Cti(τ)dτ=0

对上式的两边求关于 t 的导数,得到:

d2idt2+RLdidt+1LCi=0

这是一个二阶齐次线性微分方程。其初值条件为:

{i(0)=I0didt(0)=1L(RI0+V0)

通解

  • α>ω0
i(t)=A1es1t+A2es2t
  • α=ω0
i(t)=(A2+A1t)eαt
  • α<ω0
i(t)=eαt(B1cos(ωdt)+B2sin(ωdt))

其中,s 为特征值或自然频率 (natural frequency);α 为奈培频率 (neper frequency);ω0 为共振频率 (resonant frequency) 或无阻尼频率 (undamped natural frequency);ωd 为阻尼频率 (damped frequency):

s1=α+α2ω02,s2=αα2ω02α=R2L,ω0=1LC,ωd=ω02α2

无源并联 RLC 电路

The Source-Free Parallel RLC Circuit

Source-free parallel RLC circuit

如图:

i(0)=I0=1L0v(t)dt=I0v(0)=V0

应用 KCL:

vR+1Ltv(τ)dτ+Cdvdt=0

对上式的两边求关于 t 的导数,得到:

d2vdt2+1RCdvdt+1LCv=0

这是一个二阶齐次线性微分方程。其初值条件为:

{v(0)=V0dvdt(0)=1C(V0R+I0)

通解

  • α>ω0
v(t)=A1es1t+A2es2t
  • α=ω0
v(t)=(A1+A2t)eαt
  • α<ω0
v(t)=eαt(A1cos(ωdt)+A2sin(ωdt))

其中,

s1,2=α±α2ω02α=12RC,ω0=1LC,ωd=ω02α2

阶跃响应串联 RLC 电路

Step Response of a Series RLC Circuit

v(t)=Vs+A1es1t+A2es2t(Overdamped)v(t)=Vs+(A1+A2t)eαt(Critically Damped)v(t)=Vs+(A1cos(ωdt)+A2sin(ωdt))eαt(Underdamped)

阶跃响应并联 RLC 电路

Step Response of a Parallel RLC Circuit

i(t)=Is+A1es1t+A2es2t(Overdamped)i(t)=Is+(A1+A2t)eαt(Critically Damped)i(t)=Is+(A1cos(ωdt)+A2sin(ωdt))eαt(Underdamped)