Skip to content

交流电路功率分析

瞬时功率

Instantaneous Power

The instantaneous power (in watts) is the power at any instant of time.

p(t)=v(t)i(t)
Sinusoidal source and passive linear circuit.

如图,假设电路的电压和电流可以表示为正弦量

v(t)=Vmcos(ωt+θv)i(t)=Imcos(ωt+θi)

则瞬时功率可以表示为

p(t)=v(t)i(t)=VmImcos(ωt+θv)cos(ωt+θi)

应用三角函数积化和差公式

cosAcosB=12[cos(A+B)+cos(AB)]

得到

p(t)=12VmIm[cos(ωt+θv+ωt+θi)+cos(ωt+θvωtθi)]=12VmImcos(θvθi)+12VmImcos(2ωt+θv+θi)

可以看到,瞬时功率的计算公式非常复杂,难以直接计算。

平均功率

Average Power

The average power, in watts, is the average of the instantaneous power over one period.

P=1T0Tp(t)dt

对瞬时功率公式进行一个周期的积分

P=1T0T12VmImcos(θvθi)dt+1T0T12VmImcos(2ωt+θv+θi)dt=12VmImcos(θvθi)1T0Tdt+1T0T12VmImcos(2ωt+θv+θi)dt 三角函数一个周期的面积为 0=12VmImcos(θvθi)

上式为平均功率的时域表达式。为了获取其相量域表达式,注意到

12VI=12VmejθvImejθi=12VmImej(θvθi)=12VmIm[cos(θvθi)+jsin(θvθi)]

总结,交流电路平均功率表达式为

P=Re(12VI)=12VmImcos(θvθi)

最大平均功率传输

Maximum Average Power Transfer

For maximum average power transfer, the load impedence ZL must be equal to the complex conjugate of the Thevenin impedance ZTh.

Finding the maximum average power transfer: (a) circuit with a load, (b) the Thevenin equivalent.

如图,假设 VThZTh 为电路的戴维南等效电压、阻抗值,ZL 为负载阻抗。并且

ZTh=RTh+jXThZL=RL+jXL

流经负载的电流为

I=VThZTh+ZL=VThRTh+jXTh+RL+jXL=VTh(RTh+RL)+j(XTh+XL)

传递到负载的平均功率为

P=12VmImcos0=12VmIm=12Im2RL=12|I|2RL=RL2|VTh|2(RTh+RL)2+(XTh+XL)2

其中,注意

|I|2=I×I=Imθi×Imθi=Im2

以及

|I|=|VTh||(RTh+RL)+j(XTh+XL)|=|VTh|(RTh+RL)2+(XTh+XL)2|I|2=|VTh|2(RTh+RL)2+(XTh+XL)2

为了使负载获得最大平均功率,能够调整的参数只有负载的 RL 和 XL,所以需要求 P 关于 RL 和 XL 的偏导数,并令其等于零

先回顾一下乘积求导公式和除法求导公式

ddx(uv)=uv+uvddx(uv)=uvuvv2

求 P 关于 RL 和 XL 的偏导数,并令其等于零

PXL=XL|VTh|2RL/2(RTh+RL)2+(XTh+XL)2=|VTh|2RL/22(XTh+XL)[(RTh+RL)2+(XTh+XL)2]2=|VTh|2RL(XTh+XL)[(RTh+RL)2+(XTh+XL)2]2=0Thus,XTh+XL=0XL=XTh
PRL=RL|VTh|2RL/2(RTh+RL)2+(XTh+XL)2=|VTh|2/2[(RTh+RL)2+(XTh+XL)2]|VTh|2RL/22(RTh+RL)[(RTh+RL)2+(XTh+XL)2]2=|VTh|2/2×[(RTh+RL)2+(XTh+XL)22RL(RTh+RL)][(RTh+RL)2+(XTh+XL)2]2=0Thus,(RTh+RL)2+(XTh+XL)22RL(RTh+RL)=0RTh2+2RThRL+RL2+(XTh+XL)22RThRL2RL2=0RTh2RL2+(XTh+XL)2=0RL=RTh2+(XTh+XL)2

结合上述两个偏微分方程的结果,为了实现最大平均功率传输,负载阻抗 ZL 必须使得 XL = -XTh,并且 RL = RTh

ZL=RLjXL=RThjXTh=ZTh

于是,最大平均功率为

Pmax=RTh2|VTh|2(RTh+RTh)2+(XThXTh)2=|VTh|28RTh

有效值或均方根值

Effective or RMS Value

The effective value of a periodic current is the dc current that delivers the same average power to a resistor as the periodic current.

P=Ieff2R

The effective value of a periodic signal is its root mean square (rms) value.

Xeff=Xrms=1T0Tx2dt

常用公式

P=12VmImcos(θvθi)=Vrms2×Irms2cos(θvθi)=VrmsIrmscos(θvθi)
P=Irms2R=Vrms2R

视在功率和功率因数

Apparent Power and Power Factor

P=12VmImcos(θvθi)=VrmsIrmscos(θvθi)

The apparent power (in VA) is the product of the rms values of voltage and current.

S=VrmsIrms

The power factor is the cosine of the phase difference between voltage and current. It is also the cosine of the angle of the load impedance.

pf=PS=cos(θvθi)

复功率

Complex Power

Complex power (in VA) is the product of the rms voltage phasor and the complex conjugate of the rms current phasor. As a complex quantity, its real part is real power P and its imaginary part is reactive power Q.

  • Complex Power
S=P+jQ=VrmsIrms=|Vrms||Irms|ej(θvθi)
  • Apparent Power
S=|S|=|Vrms||Irms|=P2+Q2
  • Real Power
P=Re(S)=Scos(θvθi)
  • Reactive Power
Q=Im(S)=Ssin(θvθi)
  • Power Factor
pf=PS=cos(θvθi)

The complex, real, and reactive powers of the sources equal the respective sums of the complex, real, and reactive powers of the individual loads.

功率因数校正

Power Factor Correction

The process of increasing the power factor without altering the voltage or current to the original load is known as power factor correction.

Power factor correction: (a) original inductive load, (b) inductive load with improved power factor.
Power triangle illustrating power factor correction.

以下分析需要满足电容并联在原感性负载两端,以确保 real power P 不变。

C=P(tanθ1tanθ2)ωVrms2