Skip to content

正弦量与相量

Sinusoids and Phasors

正弦量

辅助角公式 (The auxiliary angle formula):

Acos(ωt)+Bsin(ωt)=Ccos(ωtθ)

其中

C=A2+B2,θ=tan1(BA)

前提为频率相同

相量

复数的基本形式:

z=x+jyRectangular formz=rϕPolar formz=r(cosϕ+jsinϕ)Trigonometric formz=rejϕExponential form

其中

r=x2+y2,ϕ=tan1(yx)

复数的基本代数运算:

OperationResult
Additionz1+z2=(x1+x2)+j(y1+y2)
Subtractionz1z2=(x1x2)+j(y1y2)
Multiplicationz1z2=r1r2(ϕ1+ϕ2)
Divisionz1z2=r1r2(ϕ1ϕ2)
Reciprocal1z=1rϕ
Square Rootz=rϕ2
Conjugatez=xjy=rϕ=rejϕ

时域 (Time domain)

v(t)=Vmcos(ωt+ϕ)=Re(Vmej(ωt+ϕ))=Re(Vmejϕejωt)=Re(Vejωt)

相量域 (Phasor domain)

V=Vmϕ

微积分运算

dv(t)dtjωVv(t)dtVjω

注:积分运算忽略了积分常数,因为在交流稳态分析中,我们假设没有直流分量。

阻抗与导纳

Impedance and Admittance

The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, measured in ohms (Ω).

V=ZIZeq=Z1+Z2++ZN

The admittance Y is the reciprocal of impedance, measured in siemens (S).

I=YVYeq=Y1+Y2++YN

基尔霍夫定律

For KVL,

V=0

For KCL,

I=0